

Design and Development of a New Suspension System for the Caterham SV-R

Presented by: Jay O'Connell, Multimatic Vehicle Engineering Manager

Vehicle Engineering

Multimatic has engineered a number of complete vehicle and chassis systems for both niche road car and race applications

Overview

□ Presentation Overview

- Project Scope
- Project Targets
- Suspension Design
 - Measurement and Modeling of Existing Vehicle
 - New Suspension Target Setting and Optimisation
 - Kinematic Analysis
 - New Design Modeling and Detail Component Design
- Suspension Development
 - Initial Suspension Set-Up Calculations
 - Dynamic Analysis including virtual 4 post rig
 - Prototype Assembly
 - Rig Testing: K+C and 4-Post Rig Tests
 - Road Evaluation
 - Track testing
- Results and Conclusions

Project Scope

□ Project Scope

- Caterham Cars Ltd. commissioned Multimatic, Inc. to design and develop new front and rear suspensions for the Roadsport SV model in 2003
- Revise the front steering geometry and replace the outboard spring-damper design with with inboard mounted dampers maintaining the same motion ratio
- Replace the de Dion rear suspension with an all new adjustable independent rear suspension

Project Targets

□ Project Targets:

- Improved ride and handling without losing the iconic character of the Caterham Seven
- Improved suspension and steering kinematics
- Increased adjustability (ride height, front ARB, rear camber and toe adjustability)
- Reduced unsprung weight
- Minimise use of new components and level of validation required

Measurement of Existing Vehicle

 CMM measurements taken of existing frame and suspension components

Right front suspension

Left rear suspension

Measurement of Existing Vehicle

 □ Chassis compliance was measured through full vehicle torsion testing at MTCE

Modeling of Existing Vehicle

□ Kinematic model of standard car produced in ADAMS and validated based on correlation with K&C results

Caterham SV FRONT Bump Camber

Modeling of Existing Vehicle

 □ SDRC I-Deas 3D CAD models were created for the existing components and assembled into a full vehicle model

Target Setting

□ Front and Rear suspension design targets were set using desired vehicle characteristics, benchmarking and experience

	Front Targets	Rear Targets	
Caster (deg)	5.0	2.0 to 5.0	
Caster trail (mm)	30.0	5.0 to 25.0	
KPI (deg)	9.0 to 11.0	<12.0	
Hub offset (mm)	50.0 to 60.0	40.0 to 75.0	
ground offset (mm)	8.0 to 15.0	-5.0 to 20.0	
Toe (deg)	-0.10	0.17	
Camber (deg)	-2.00	-1.25	
Roll Centre H (mm)	30.0 to 40.0	20.0 to 40.0 > Front	
RC migration @3°(mm)	-10.0 to 10.0	5.0 to 15.0 < Front	
Anti-Dive (%)	20.0	-	
Anti-Squat (%)	-	20.0	
Anti-Lift (%)	-	40.0	
Bump Steer (deg/m)	-3.0 to -5.0	1.0 to 2.5	
Bump Camber (deg/m)	-10.0 to -40.0	-10.0 to -40.0	
Bump Caster (deg/m)	< 20.0	Minimise	
Wheel Reces. (mm/m)	> 0.0	>15.0	
Roll Camber (deg/deg)	0.25 to 0.30	0.35 to 0.40	
Roll Steer (deg/deg)	0.04 to 0.075	-0.01 to -0.02	
Ackerman (%)	40.0%	_	

Optimisation

- Kinematics optimised using ADAMS/Car and ADAMS/Motorsport against baseline targets
- Proposals reviewed and compared against CAD data for design and manufacturing feasibility

FRONT SUSPENSION

June 17, 2003

Proposal C:

Objectives: Widen the front track to correspond to the rear one Constraints: Use the existing upright, hub, lower A-Arm position Modifications: Hub shifted outboard to match new front track.

		Front Suspension		
	TARGET	SV original	Proposal B	Proposal C
Caster (deg)	5	7.7	4.7	4.8
Caster trail (mm)	30	33	24	24
KPI (deg)	9 to 11	11.2	10.9	10.9
Hub offset (mm)	50 to 60	100	75	75
ground offset (mm)	8 to 15	61.5	36.5	36.5
Toe (deg)	-0.1	-0.28	-0.33	-0.34
Camber (deg)	-2.0	-2.3	-2.1	-2.1
Roll Centre H (mm)	30 to 40	62	32.2	33
RC migration @3°(mm)	-10 to 10	-0.9	-3.6	-4.1
Anti-Dive (%)	20	72	57	57.6
Anti-Squat (%)	-	-	-	-
Anti-Lift (%)			-	-
Bump Steer (deg/m)	-3 to -5	-1.6	-4.0	-4.2
Bump Camber (deg/m)	-10 to -40	-30	-17	-17
Bump Caster (deg/m)	<20	39	29	29
Wheel Reces. (mm/m)	>0	9	2.2	1.9
Roll Camber (deg/deg)	0.25 to 0.30	0.39	0.22	0.22
Roll Steer (deg/deg)	0.04 to 0.075	0.02	0.05	0.05
Ackerman (%)	40%	32% (1 rev)	33% (1 rev)	32% (1 rev)

^{*} All values valid for ride height 2UP condition with CR500 195/45 R15 tyre.

Kinematic Analysis

□ ADAMS example: Front Roll Analysis

Kinematic Analysis

□ ADAMS example: Rear Roll Analysis

New Design Modeling

□ Full chassis and suspension 3D solid modeled in SDRC I-deas

New Design Modeling

□ Component design reviewed in partnership with Caterham and their suppliers

Component Design

□ Component designs created from 3D hardpoints

New rear cast upright

Component Design

 □ Component designs optimised using load cases generated from the ADAMS analysis

Topology optimisation of the front rocker

Component Design

□ Design verification using FEA on critical components

 ABAQUS stress analysis of the front rocker design under a 5g loadcase

Initial Set-Up Calculations

 Initial suspension set-up calculation for spring and bar rates performed using Multimatic software

Initial Set-Up Calculations

 Initial damper forces calculated using Multimatic Dynosoft software

Dynamic Analysis

□ Virtual 4-Post Rig Analysis

Prototype Assembly

□ Build support at Caterham's Dartford, UK factory

□ Suspension kinematics and compliances measured on single axle K+C rig and compared with ADAMS analysis

 □ Vehicle tuned on MTCE 4-post rig in Thetford, UK using Dave Williams methodologies

Road Testing

□ Initial road testing at Millbrook conducted by Murray White, Head of Vehicle Development:

"Very Impressive performance out of the box; greatly reduced steering effort, kickback, and rear-end steer over bumps."

"Limit balance was progressive and adjustable and proved sensitive to anti-roll bar stiffness changes."

"The yaw center seems about right for a good compromise between agility and stability."

"Good phasing of the front to rear axle lateral force build up."

Track Testing

 On-track development run and supported by MTCE staff: engineers, technicians and driver

Snetterton Test: 13th September 2003. Driver: Scot Maxwell

Track Testing

 On-track development run and supported by MTCE staff: engineers, technicians and driver

"The new suspension makes the vehicle more stable and easier to drive faster." – Scott Maxwell, Driver

Results

□ Program results:

- Project managed and delivered on time to Caterham
- Incorporated increased level of adjustability
- 6 kg reduction in unsprung mass
- Improved kinematics:
 - lower roll centre both front and rear
 - significant reduction in hub and ground offset
 - Improved wheel recession and front/rear anti-dive/ anti-lift balance
- Ride and handling: the car was very good "right out of the box". The steering feel and response was improved and the handling was well balanced, progressive and adjustable.

Conclusions

□ Conclusions:

- Successful integration of target setting, analysis, rig testing and road testing
- Front and Rear suspension systems designed to complement each other
- Modern platform for Caterham future derivatives